Computer Science – Information Theory
Scientific paper
2011-02-16
Computer Science
Information Theory
Submitted to IEEE Transactions on Information Theory
Scientific paper
A code for communication over the k-receiver additive white Gaussian noise broadcast channel with feedback is presented and analyzed using tools from the theory of linear quadratic Gaussian optimal control. It is shown that the performance of this code depends on the noise correlation at the receivers and it is related to the solution of a discrete algebraic Riccati equation. For the case of independent noises, the sum rate achieved by the proposed code, satisfying average power constraint P, is characterized as 1/2 log (1+P*phi), where the coefficient "phi" in the interval [1,k] quantifies the power gain due to the presence of feedback. When specialized to the case of two receivers, this includes a previous result by Elia and strictly improves upon the code of Ozarow and Leung. When the noises are correlated, the pre-log of the sum-capacity of the broadcast channel with feedback can be strictly greater than one. It is established that for all noise covariance matrices of rank r the pre-log of the sum capacity is at most k-r+1 and, conversely, there exists a noise covariance matrix of rank r for which the proposed code achieves this upper bound. This generalizes a previous result by Gastpar and Wigger for the two-receiver broadcast channel.
Ardestanizadeh Ehsan
Franceschetti Massimo
Minero Paolo
No associations
LandOfFree
LQG Control Approach to Gaussian Broadcast Channels with Feedback does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with LQG Control Approach to Gaussian Broadcast Channels with Feedback, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LQG Control Approach to Gaussian Broadcast Channels with Feedback will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-416595