Lower bounds for ranks of Mumford-Tate groups

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Let A be a complex abelian variety and G its Mumford--Tate group. Supposing that the simple abelian subvarieties of A are pairwise non-isogenous, we find a lower bound for the rank of G, which is a little less than log_2 dim A. If we suppose further that End A is commutative, then we show that rk G >= log_2 g + 2, and this latter bound is sharp. We also obtain the same results for the rank of the l-adic monodromy group of an abelian variety defined over a number field. ----- Soit A une vari\'et\'e ab\'elienne complexe et G son groupe de Mumford--Tate. En admettant que les sous vari\'et\'es ab\'eliennes simples de A sont deux \`a deux non-isog\`enes, en trouve une minoration du rang de G, un peu moins que log_2 dim A. Si on suppose en plus que End A soit commutatif, alors on montre que rk G >= log_2 g + 2, et cette borne-ci est la meilleure possible. On obtient les m\^emes resultats pour le rang du groupe de monodromie l-adique d'une vari\'et\'e ab\'elienne d\'efinie sur un corps de nombres.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Lower bounds for ranks of Mumford-Tate groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Lower bounds for ranks of Mumford-Tate groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lower bounds for ranks of Mumford-Tate groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-147944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.