Computer Science – Performance
Scientific paper
Jan 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006lrr.....9....1a&link_type=abstract
Living Reviews in Relativity, vol. 9, no. 1
Computer Science
Performance
16
Gravitational Waves
Scientific paper
This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz) gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity 2 Δ v/c = Δ ν/ν0, where Δ ν is the Doppler shift and ν0 is the radio link carrier frequency. A gravitational wave having strain amplitude h incident on the earth-spacecraft system causes perturbations of order h in the time series of Δ ν/ν0. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series), some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.
No associations
LandOfFree
Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1212605