Mathematics – Statistics Theory
Scientific paper
2007-06-13
D\'ependence in probability and statistics, Springer (Ed.) (2006) 221--244
Mathematics
Statistics Theory
Scientific paper
It is generally accepted that many time series of practical interest exhibit strong dependence, i.e., long memory. For such series, the sample autocorrelations decay slowly and log-log periodogram plots indicate a straight-line relationship. This necessitates a class of models for describing such behavior. A popular class of such models is the autoregressive fractionally integrated moving average (ARFIMA) which is a linear process. However, there is also a need for nonlinear long memory models. For example, series of returns on financial assets typically tend to show zero correlation, whereas their squares or absolute values exhibit long memory. Furthermore, the search for a realistic mechanism for generating long memory has led to the development of other nonlinear long memory models. In this chapter, we will present several nonlinear long memory models, and discuss the properties of the models, as well as associated parametric andsemiparametric estimators.
Deo Rohit
Hsieh Meng-Chen
Hurvich Clifford M.
Soulier Philippe
No associations
LandOfFree
Long Memory in Nonlinear Processes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Long Memory in Nonlinear Processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Long Memory in Nonlinear Processes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-450585