List Distinguishing Parameters of Trees

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 pages

Scientific paper

A coloring of the vertices of a graph G is said to be distinguishing} provided no nontrivial automorphism of G preserves all of the vertex colors. The distinguishing number of G, D(G), is the minimum number of colors in a distinguishing coloring of G. The distinguishing chromatic number of G, chi_D(G), is the minimum number of colors in a distinguishing coloring of G that is also a proper coloring. Recently the notion of a distinguishing coloring was extended to that of a list distinguishing coloring. Given an assignment L= {L(v) : v in V(G)} of lists of available colors to the vertices of G, we say that G is (properly) L-distinguishable if there is a (proper) distinguishing coloring f of G such that f(v) is in L(v) for all v. The list distinguishing number of G, D_l(G), is the minimum integer k such that G is L-distinguishable for any list assignment L with |L(v)| = k for all v. Similarly, the list distinguishing chromatic number of G, denoted chi_{D_l}(G) is the minimum integer k such that G is properly L-distinguishable for any list assignment L with |L(v)| = k for all v. In this paper, we study these distinguishing parameters for trees, and in particular extend an enumerative technique of Cheng to show that for any tree T, D_l(T) = D(T), chi_D(T)=chi_{D_l}(T), and chi_D(T) <= D(T) + 1.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

List Distinguishing Parameters of Trees does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with List Distinguishing Parameters of Trees, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and List Distinguishing Parameters of Trees will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-378284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.