Liquid-vapor fractionation of boron and boron isotopes: Experimental calibration at 400°C/23 MPa to 450°C/42 MPa

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3

Scientific paper

We experimentally determined the boron partitioning and boron isotope fractionation between coexisting liquid and vapor in the system H2O-NaCl-B2O3. Experiments were performed along the 400 and 450°C isotherms. Pressure conditions ranged from 23 to 28 MPa at 400°C and from 38 to 42 MPa at 450°C. Boron partitions preferentially into the liquid. Its overall liquid-vapor fractionation is, however, weak: Calculated boron distribution coefficients DBliquid-vapor are < 2.5 at all run conditions. With decreasing pressure (i.e. increasing opening of the solvus) DBliquid-vapor increases along the individual isotherms. Extrapolation to salt saturated conditions yields maximum boron liquid-vapor fractionations of DBliquid-vapor = 1.8 at 450°C and DBliquid-vapor = 2.7 at 400°C. 11B preferentially fractionates into the vapor. Calculated Δ11Bvapor-liquid = {[(11B/10B)vapor (11B/10B)liquid]/(11B/10B)NBS 951}*1000 are small and range from 0.2 (± 0.7) to 0.9 (± 0.5) ‰ at 450°C and from 0.1 (± 0.6) to 0.7 (± 0.6) ‰ at 400°C. The data indicate increasing isotopic fractionation with decreasing pressure (i.e. increasing opening of the solvus). Extrapolation to salt saturated conditions yields maximum boron isotope liquid-vapor fractionations of Δ11Bvapor-liquid = 1.5 (± 0.7) ‰ at 450°C and Δ11Bvapor-liquid = 1.3 (± 0.6) ‰ at 400°C. The weak boron isotope fractionation suggests similar trigonal speciation in liquid and vapor. Although the boron and boron isotope fractionation between liquid and vapor is only weak, mass balance calculations indicate that for high degrees of fractionation liquid-vapor phase separation in an open system can significantly alter the boron and boron isotope signature of low-salinity hydrous fluids in hydrothermal systems. Comparing the model calculations with natural oceanic hydrothermal fluids, however, indicate that other processes than fluid phase separation dominate the boron geochemistry in oceanic hydrothermal fluids.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Liquid-vapor fractionation of boron and boron isotopes: Experimental calibration at 400°C/23 MPa to 450°C/42 MPa does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Liquid-vapor fractionation of boron and boron isotopes: Experimental calibration at 400°C/23 MPa to 450°C/42 MPa, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid-vapor fractionation of boron and boron isotopes: Experimental calibration at 400°C/23 MPa to 450°C/42 MPa will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1432034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.