Statistics – Computation
Scientific paper
Nov 1990
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1990apj...364..104i&link_type=abstract
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 364, Nov. 20, 1990, p. 104-113. Research supported by NASA.
Statistics
Computation
448
Astronomy, Least Squares Method, Regression Analysis, Computational Astrophysics, Galaxies, Slopes
Scientific paper
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Akritas Michael G.
Babu Gutti Jogesh
Feigelson Eric D.
Isobe Takashi
No associations
LandOfFree
Linear regression in astronomy. does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Linear regression in astronomy., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear regression in astronomy. will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-839883