Linear maps preserving invariants

Mathematics – Representation Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

minor changes

Scientific paper

Let $G\subset\GL(V)$ be a complex reductive group. Let $G'$ denote
$\{\phi\in\GL(V)\mid p\circ\phi=p\text{for all} p\in\C[V]^G\}$. We show that,
in general, $G'=G$. In case $G$ is the adjoint group of a simple Lie algebra
$\lieg$, we show that $G'$ is an order 2 extension of $G$. We also calculate
$G'$ for all representations of $\SL_2$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Linear maps preserving invariants does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Linear maps preserving invariants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear maps preserving invariants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-367463

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.