Mathematics – Classical Analysis and ODEs
Scientific paper
2012-01-12
Mathematics
Classical Analysis and ODEs
Scientific paper
In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center. Based on the method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Then, we consider the symmetric singular points and present the conditions for one of them to be elementary center or nilpotent center. Under the condition for the singular point to be a center, we obtain the normal form of the Hamiltonian systems near the center. Moreover, perturbing the symmetric cubic Hamiltonian systems by cubic polynomials, we consider limit cycles bifurcating from the center using the algorithm to compute the coefficients of Melnikov function. Finally, perturbing the symmetric hamiltonian system by symmetric cubic polynomials, we consider the number of limit cycles near one of the symmetric centers of the symmetric near-Hamiltonian system, which is same to that of another center.
Gao Bin
Hu Zhaoping
Romanovski Valery G.
No associations
LandOfFree
Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-468183