Statistics – Applications
Scientific paper
Sep 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997spie.3208...24s&link_type=abstract
Proc. SPIE Vol. 3208, p. 24-36, Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active Vision, and Materials
Statistics
Applications
Scientific paper
We report on the development of new mobile robots for Mars exploration missions. These 'lightweight survivable rover (LSR)' systems are of potential interest to both space and terrestrial applications, and are distinguished from more conventional designs by their use of new composite materials, collapsible running gear, integrated thermal-structural chassis, and other mechanical features enabling improved mobility and environmental robustness at reduced mass, volume, and power. Our first demonstrated such rover architecture, LSR-1, introduces running gear based on 2D composite struts and 3D machined composite joints, a novel collapsible hybrid composite-aluminum wheel design, a unit-body structural- thermal chassis with improved internal temperature isolation and stabilization, and a spot-pushbroom laser/CCD sensor enabling accurate, fast hazard detection and terrain mapping. LSR-1 is an approximately .7 $MIL 1.0 meter(Lambda) 2(W X L) footprint six-wheel (20 cm dia.) rocker-bogie geometry vehicle of approximately 30 cm ground clearance, weighing only 7 kilograms with an onboard .3 kilogram multi-spectral imager and spectroscopic photometer. By comparison, NASA/JPL's recently flown Mars Pathfinder rover Sojourner is an 11+ kilogram flight experiment (carrying a 1 kg APXS instrument) having approximately .45 X .6 meter(Lambda) 2(WXL) footprint and 15 cm ground clearance, and about half the warm electronics enclosure (WEE) volume with twice the diurnal temperature swing (-40 to +40 degrees Celsius) of LSR- 1 in nominal Mars environments. We are also developing a new, smaller 5 kilogram class LSR-type vehicle for Mars sample return -- the travel to, localization of, pick-up, and transport back to an Earth return ascent vehicle of a sample cache collected by earlier science missions. This sample retrieval rover R&D prototype has a completely collapsible mobility system enabling rover stowage to approximately 25% operational volume, as well an actively articulated axle, allowing changeable pose of the wheel strut geometry for improved transverse and manipulation characteristics.
Aghazarian Hrand
Balch T.
Baumgartner Eric T.
Bickler Donald B.
Brown D. K.
No associations
LandOfFree
Lightweight rovers for Mars science exploration and sample return does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lightweight rovers for Mars science exploration and sample return, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lightweight rovers for Mars science exploration and sample return will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1295934