Mathematics – K-Theory and Homology
Scientific paper
1999-01-21
Mathematics
K-Theory and Homology
Scientific paper
Studies among other things, the question of whether a Lie algebra over
Z/(p^k)Z lifts to one over Z/(p^(k+1))Z. An obstruction theory is developed
and examples of Fp-Lie algebras which don't lift to Lie algebras over Z/p^2Z
are discussed. An example of an application of the result: A Fp-Lie algebra L
with H^3(L, ad)=0 will lift to a p-adic Lie algebra.
Browder William
Pakianathan Jonathan
No associations
LandOfFree
Lifting Lie algebras over the residue field of a discrete valuation ring does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lifting Lie algebras over the residue field of a discrete valuation ring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lifting Lie algebras over the residue field of a discrete valuation ring will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-545250