Statistics – Methodology
Scientific paper
Jul 1998
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1998spie.3350..128j&link_type=abstract
Proc. SPIE Vol. 3350, p. 128-138, Astronomical Interferometry, Robert D. Reasenberg; Ed.
Statistics
Methodology
Scientific paper
The MicroPrecision Interferometer Testbed (MPI), at JPL is a dynamically and dimensionally representative hardware model of a future spaceborne optical interferometry. Over the past few years, several models of MPI have been created. These include detailed, high-fidelity models of MPI and several lower-fidelity models. These models were meant to answer two basic questions: (1) Does current modeling methodology allow accurate models of highly complex opto-mechanical systems such as the MPI testbed, and (2) given a valid modeling methodology, how much model fidelity is needed in models to accurately predict performance. In order to answer these questions, four models of the MPI testbed were created; each with a unique optical and structural model fidelity. This paper reviews results obtained for these models. It compares disturbance transfer function predictions from three of the models with measured disturbance transfer functions from the hardware testbed. Results suggest that it is possible to build a highly accurate high-fidelity model, thus validating the modeling methodology. With lower fidelity models, meaningful model prediction errors exist when simple models are used to represent the complex opto-mechanical system. However, modest increase in model fidelity can lead to significant improvement.
Joshi Sanjay S.
Neat Gregory W.
No associations
LandOfFree
Lessons learned from multiple fidelity modeling of ground interferometer testbeds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lessons learned from multiple fidelity modeling of ground interferometer testbeds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lessons learned from multiple fidelity modeling of ground interferometer testbeds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1175424