Learning Unification-Based Natural Language Grammars

Computer Science – Computation and Language

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Additional info

DPhil thesis, self-unpacking latex file, 114 pages with 33 pages of appendices.

Type

Scientific paper

Abstract

When parsing unrestricted language, wide-covering grammars often undergenerate. Undergeneration can be tackled either by sentence correction, or by grammar correction. This thesis concentrates upon automatic grammar correction (or machine learning of grammar) as a solution to the problem of undergeneration. Broadly speaking, grammar correction approaches can be classified as being either {\it data-driven}, or {\it model-based}. Data-driven learners use data-intensive methods to acquire grammar. They typically use grammar formalisms unsuited to the needs of practical text processing and cannot guarantee that the resulting grammar is adequate for subsequent semantic interpretation. That is, data-driven learners acquire grammars that generate strings that humans would judge to be grammatically ill-formed (they {\it overgenerate}) and fail to assign linguistically plausible parses. Model-based learners are knowledge-intensive and are reliant for success upon the completeness of a {\it model of grammaticality}. But in practice, the model will be incomplete. Given that in this thesis we deal with undergeneration by learning, we hypothesise that the combined use of data-driven and model-based learning would allow data-driven learning to compensate for model-based learning's incompleteness, whilst model-based learning would compensate for data-driven learning's unsoundness. We describe a system that we have used to test the hypothesis empirically. The system combines data-driven and model-based learning to acquire unification-based grammars that are more suitable for practical text parsing. Using the Spoken English Corpus as data, and by quantitatively measuring undergeneration, overgeneration and parse plausibility, we show that this hypothesis is correct.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Learning Unification-Based Natural Language Grammars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Learning Unification-Based Natural Language Grammars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Learning Unification-Based Natural Language Grammars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-502632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.