Statistics – Machine Learning
Scientific paper
2009-09-28
IEEE Transactions on Signal Processing, May 2010, Volume: 58 Issue:5, pages 2701 - 2714
Statistics
Machine Learning
Submitted to Transactions on Signal Processing
Scientific paper
10.1109/TSP.2010.2042478
The problem of learning tree-structured Gaussian graphical models from independent and identically distributed (i.i.d.) samples is considered. The influence of the tree structure and the parameters of the Gaussian distribution on the learning rate as the number of samples increases is discussed. Specifically, the error exponent corresponding to the event that the estimated tree structure differs from the actual unknown tree structure of the distribution is analyzed. Finding the error exponent reduces to a least-squares problem in the very noisy learning regime. In this regime, it is shown that the extremal tree structure that minimizes the error exponent is the star for any fixed set of correlation coefficients on the edges of the tree. If the magnitudes of all the correlation coefficients are less than 0.63, it is also shown that the tree structure that maximizes the error exponent is the Markov chain. In other words, the star and the chain graphs represent the hardest and the easiest structures to learn in the class of tree-structured Gaussian graphical models. This result can also be intuitively explained by correlation decay: pairs of nodes which are far apart, in terms of graph distance, are unlikely to be mistaken as edges by the maximum-likelihood estimator in the asymptotic regime.
Anandkumar Animashree
Tan Vincent Y. F.
Willsky Alan S.
No associations
LandOfFree
Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-664297