Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7741e...5f&link_type=abstract
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. Edited by Holland, Wayne S.; Zmuidzin
Astronomy and Astrophysics
Astronomy
Scientific paper
Germanium photoconductors offer excellent sensitivity in the 50-140μm spectral range. Coupled with their modest cooling requirements and their compatibility with the silicon cryo-CMOS readout technology, these detectors are the most attractive candidates for far IR astronomy in this wavelength range. Over the years we have been pursuing the advancement of this technology and our initial effort has produced a 2x16 Ge:Sb array with an NEP in the low 10-18 W/√Hz range, rivaling the best far IR arrays currently available. Further work has resulted in design and fabrication of a low noise, 2-side buttable 32x32 (64x64 mosaic) CTIA readout, the first 1k-pixel Ge:Sb fully assembled focal-plane array, a new hybrid design better suited for far IR photoconductors, and the preliminary design of a 2-side buttable 64x64 (128x128 mosaic) CTIA readout. Our developmental work continues and we believe that sensitivity levels below 10-18 W/√Hz are within reach. This paper presents an overview of our progress so far and outlines our roadmap for further work.
Beeman Jeffrey W.
Farhoomand Jam
Sisson David L.
No associations
LandOfFree
Latest progress in developing large format Ge arrays for far-IR astronomy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Latest progress in developing large format Ge arrays for far-IR astronomy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Latest progress in developing large format Ge arrays for far-IR astronomy will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1388387