Mathematics – Logic
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008epsc.conf..847k&link_type=abstract
European Planetary Science Congress 2008, Proceedings of the conference held 21-25 September, 2008 in Münster, Germany. Online a
Mathematics
Logic
Scientific paper
Abstract Reported are findings of Neoarchean benthic colonial coccoid cyanobacteria preserved as abundant remnants of mineralized capsules and sheaths visible in SEM images as characteristic patterns after etching highly polished carbonate rock platelets. The samples described herein were collected from the Nauga Formation at Prieska (Kaapvaal craton, South Africa). The stratigraphic position of the sampling horizon (Fig. 1) is bracketed by single zircon ages from intercalated tuffs, of 2588±6 Ma and 2549±7Ma [1]. The cyanobacteria-bearing samples are located within sedimentary sequence which begins with Peritidal Member displaying increasingly transgressive character, passing upward into the Chert Member and followed by the Proto-BIF Member and by the Naute Shale Member of the Nauga Formation successively. All three latter members were deposited below the fair weather wave base. As in our previous report [2], the samples are taken from lenses of massive micritic flat pebble conglomerate occurring in otherwise finely laminated siliceous shales intercalating with thin bedded platy limestone. This part of the Nauga Formation is about 30 m thick. The calcareous, cyanobacteria-bearing flat pebble conglomerate and thin intercalations of fine-grained detrital limestones embedded in the clayey sapropel-rich deposits are interpreted as carbonate sediments winnowed during stormy weather from the nearby located peritidal carbonate platform. The mass occurrence and exceptional preservation of mineralised cyanobacterial remains in the micritic carbonate (Mg-calcite) of the redeposited flat pebbles can be explained by their sudden burial in deeper, probably anoxic clay- and sapropel-rich sediments. When examined with standard petrographic optical microscopic technique, the micritic carbonates show rather obscure structure (Fig. 2a), whereas under the SEM, polished and slightly etched platelets of the same samples reveal surprisingly well preserved patterns (Fig. 2b,c) reminiscent of common sheaths (glycocalix), typical for coccoidal colonial (pseudoparenchymatous) entophysalidacean or pleurocapsalean cyanobacteria (Fig. 2d-f). The remains of the coccoid sheaths and capsules are visible as a system of rimmed subglobular or irregularly polygonal pits separated from adjacent pits by 2-3 μm thick walls. Microprobe analyses show that the interiors of the pits are composed of almost pure calcium carbonate whereas the rims and walls of calcium carbonate with high admixture of silicates (mostly Al-Fe clay-like silicates) and dolomite. High magnification images of rims and walls confirm the microprobe data indicating authigenic character of the minerals forming both the carbonate infilling the pits interiors (CaCO3) and their rims and walls (CaCO3 + Al-Fe silicates + dolomite). EPSC Abstracts, Vol. 3, EPSC2008-A-00493, 2008 European Planetary Science Congress, Author(s) 2008 It seems that carbonates were the first mineral phase filling the spaces remained after the plasmolysis of the cyanobacterial cell contents, whereas the formation of silicates within the exopolysaccharides forming the bulk of the sheaths and capsules was a later diagenetic process. Microprobe analyses of mineralised modern coccoid cyanobacterial mats forming tower-like structures in the highly alkaline Lake Van, Turkey [3,4] display a set of elements indicative for the presence of authigenic carbonate and silicate minerals which are almost identical with that occurring in the studied Neoarchean samples. Also the optical and SEM images of polished and etched platelets of permineralised Lake Van microbialites are strikingly similar (Fig. 2d-f). Similarly as in modern cyanobacterial and other microbial mats, the process of early post mortem mineralisation, in the case of the Nauga Formation, was most probably associated with the action of heterotrophic bacteria upon the dead cyanobacterial biomass. Heterotrophic bacteria occupying EPS layers of living and dead cyanobacterial cells have the ability to bind various ions and may serve as nucleation centres for a variety of minerals [5, 6]. These, often amorphous precursor mineral phases can be transformed, during later diagenesis, into authigenic carbonates, feldspar and phyllosilicates, as observed in the case of both Nauga Formation and Lake Van cyanobacterial sheaths and capsules. The early massive appearance of benthic coccoid cyanobacteria, as evidenced by the mineralised mats in the Neoarchean Nauga Formation, and their ability to produce fine-grained limestones, confirms the significant role of these micro organisms in the formation of vast deposits of marine micritic limestones, as suggested also for younger geologic ages [7, 8]. References [1] Altermann, W. and Nelson, D. R. (1998) Sed. Geol. 120, 225-256. [2] Kazmierczak, J. and Altermann, W. (2002) Science 298, 2351. [3] Kempe, S. et al. (1991) Nature 394, 605-608. [4] Kazmierczak, J. and Altermann, W. (2002) 16th Intern. Sed. Congr. Abstract Vol., 191. [5] Douglas, S. and Beveridge, T. J. (1998) FEMS Microbiol. Ecol. 26, 79-88. [6] Barker, W. W. and Banfield, J. F. (1998) Geomicrobiol. J. 15, 223-244. [7] Kazmierczak, J. et al. (1996) Acta Palaeont. Polonica 41, 319-338. [8] Altermann, W. et al. (2006) Geobiology 4, 147- 166.
Altermann Wladyslaw
Eriksson Patrick G.
Kazmierczak Józef
Kempe Stephan
Kremer Barbara
No associations
LandOfFree
Late Archean mineralised cyanobacterial mats and their modern analogs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Late Archean mineralised cyanobacterial mats and their modern analogs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Late Archean mineralised cyanobacterial mats and their modern analogs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1795189