Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

To appear in Astronomy & Astrophysics

Scientific paper

10.1051/0004-6361:20042475

We develop a model based on 3D mean-field MHD for the generation of large scale magnetic fields in fully convective objects like low-mass stars, brown dwarfs and possibly gaseous planets. The dynamo process is of alpha^2 type and thus differs from the shell-dynamo at work in more massive stars.The alpha^2 dynamo becomes supercritical for Rossby numbers Ro\la 10. It generates a large-scale, non-axisymmetric, steady field that is symmetric with respect to the equatorial plane. Saturation of the alpha^2-generated field at the equipartition yields strengths of several kGauss, in agreement with observations of active M dwarfs, and provides a qualitative explanation for the observed activity saturation in late M stars. For brown dwarfs with a conductive core, as occurs at the center of the most massive and oldest of these objects, we have also studied an alpha^2-Omega dynamo, i.e. the effect of differential rotation. In this case the field is predominantly toroidal, axisymmetric and oscillatory, like the solar field. The topology of the field in the fully convective objects exhibits a high order multipole character that differs from the aligned dipole field generated by the alpha-Omega dynamo. The strong reduction of the dipolar component due to the field non-axisymmetry should considerably reduce the Alfven radius and thus the efficiency of magnetic braking, providing an appealing explanation for the decreasing angular momentum loss rate observed in low-mass stars and brown dwarfs. This may have also implications for cataclysmic variables below the period gap. In spite of this large-scale field, the decreasing conductivity in the dominantly neutral atmosphere of these objects prevents the current generation necessary to support a chromosphere and thus activity. (Abridged)

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-82921

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.