Large-N Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages, 2 figures

Scientific paper

We study Mandelbrot's percolation process in dimension $d \geq 2$. The process generates random fractal sets by an iterative procedure which starts by dividing the unit cube $[0,1]^d$ in $N^d$ subcubes, and independently retaining or discarding each subcube with probability $p$ or $1-p$ respectively. This step is then repeated within the retained subcubes at all scales. As $p$ is varied, there is a percolation phase transition in terms of paths for all $d \geq 2$, and in terms of $(d-1)$-dimensional "sheets" for all $d \geq 3$. For any $d \geq 2$, we consider the random fractal set produced at the path-percolation critical value $p_c(N,d)$, and show that the probability that it contains a path connecting two opposite faces of the cube $[0,1]^d$ tends to one as $N \to \infty$. As an immediate consequence, we obtain that the above probability has a discontinuity, as a function of $p$, at $p_c(N,d)$ for all $N$ sufficiently large. This had previously been proved only for $d=2$ (for any $N \geq 2$). For $d \geq 3$, we prove analogous results for sheet-percolation. In dimension two, Chayes and Chayes proved that $p_c(N,2)$ converges, as $N \to \infty$, to the critical density $p_c$ of site percolation on the square lattice. Assuming the existence of the correlation length exponent $\nu$ for site percolation on the square lattice, we establish the speed of convergence up to a logarithmic factor. In particular, our results imply that $p_c(N,2)-p_c=(\frac{1}{N})^{1/\nu+o(1)}$ as $N \to \infty$, showing an interesting relation with near-critical percolation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Large-N Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Large-N Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large-N Limit of Crossing Probabilities, Discontinuity, and Asymptotic Behavior of Threshold Values in Mandelbrot's Fractal Percolation Process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-3088

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.