Mathematics – Probability
Scientific paper
2010-04-12
Mathematics
Probability
30 pages, 1 figure. In this new version, the introduction and the preliminaries in particular have been rewritten (for a drama
Scientific paper
Consider a Langevin process, that is an integrated Brownian motion, constrained to stay on the nonnegative half-line by a partially elastic boundary at 0. If the elasticity coefficient of the boundary is greater than or equal to a critical value (0.16), bounces will not accumulate in a finite time when the process starts from the origin with strictly positive velocity. We will show that there exists then a unique entrance law from the boundary with zero velocity, despite the immediate accumulation of bounces. This result of uniqueness is in sharp contrast with the literature on deterministic second order reflection. Our approach uses certain properties of real-valued random walks and a notion of spatial stationarity which may be of independent interest.
No associations
LandOfFree
Langevin process reflected on a partially elastic boundary I does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Langevin process reflected on a partially elastic boundary I, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Langevin process reflected on a partially elastic boundary I will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-262707