Mathematics – Functional Analysis
Scientific paper
2004-01-24
C.R. Acad. Sci. Paris t.307, Serie I, (1988), 949-953
Mathematics
Functional Analysis
9 pages, French with abridged english version
Scientific paper
We introduce the $H^1$-projective property, and use it to construct a Banach
space $X$ such that the natural map
$J:H^2(X)\otimes H^2(X) -> H^1(X\otimes X)$ is not onto.
No associations
LandOfFree
L'Application Canonique $J:H^2(X) \otimes H^2(X)->H^1(X\otimes X)$ n'est pas Surjective en Général does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with L'Application Canonique $J:H^2(X) \otimes H^2(X)->H^1(X\otimes X)$ n'est pas Surjective en Général, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and L'Application Canonique $J:H^2(X) \otimes H^2(X)->H^1(X\otimes X)$ n'est pas Surjective en Général will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-455140