Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics
Scientific paper
2009-05-21
Astrophys.J.723:767-780,2010
Astronomy and Astrophysics
Astrophysics
Galaxy Astrophysics
16 pages, 5 figures, published in ApJ, 2010, 723, 767
Scientific paper
10.1088/0004-637X/723/1/767
We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear starforming ring of NGC1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms are well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with inferred pitch angle of of 52+/-4 degrees. This interpretation predicts a two-arm spiral distortion in the surface brightness, as hinted by the dust structures in central images of NGC1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionised gas within the circumnuclear region of this galaxy. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 Msun/yr at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10^{-3} of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity not only can provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a handle on the mass inflow rate as a function of radius.
Fathi Kambiz
van de Ven Glenn
No associations
LandOfFree
Kinematic analysis of nuclear spirals: feeding the black hole in NGC1097 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Kinematic analysis of nuclear spirals: feeding the black hole in NGC1097, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kinematic analysis of nuclear spirals: feeding the black hole in NGC1097 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-324753