Mathematics – Number Theory
Scientific paper
2003-03-11
Mathematics
Number Theory
20 pages
Scientific paper
Let $X_0(I)$ be the Drinfeld's modular curve with level $I$ structure, where $I$ is a monic square-free ideal in $\F_{q}[T]$. In this paper we show the existence of an element in the motivic cohomology group $H^3_{\M}(X_0(I) \times X_0(I),\Q(2))$ whose regulator is related to a special value of a Ranking-Selberg convolution $L$-function. This result is the function field analogue of a theorem of Beilinson for the self product of a modular curve.
Consani Caterina
Sreekantan Ramesh
No associations
LandOfFree
K1 of products of Drinfeld Modular Curves and Special Values of L-functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with K1 of products of Drinfeld Modular Curves and Special Values of L-functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and K1 of products of Drinfeld Modular Curves and Special Values of L-functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-130816