Isometric approximation property of unbounded sets

Mathematics – Functional Analysis

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages

Scientific paper

Necessary and sufficient quantitative geometric conditions are given for an
unbounded set A in a euclidean space R^n to have the following property with a
given c > 0: For every s > 0 and for every s-nearisometry f: A -> R^n there is
an isometry T: A -> R^n such that |Tx - fx| \le cs for all x in A.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Isometric approximation property of unbounded sets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Isometric approximation property of unbounded sets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isometric approximation property of unbounded sets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-503814

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.