Computer Science – Sound
Scientific paper
Sep 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004eso..pres...23.&link_type=abstract
ESO Press Release, 09/2004
Computer Science
Sound
Scientific paper
VLT Images and Spectra of Intriguing Object near Young Brown Dwarf [1]
Summary
Is this newly discovered feeble point of light the long-sought bona-fide image of an exoplanet?
A research paper by an international team of astronomers [2] provides sound arguments in favour, but the definitive answer is now awaiting further observations.
On several occasions during the past years, astronomical images revealed faint objects, seen near much brighter stars. Some of these have been thought to be those of orbiting exoplanets, but after further study, none of them could stand up to the real test. Some turned out to be faint stellar companions, others were entirely unrelated background stars. This one may well be different.
In April of this year, the team of European and American astronomers detected a faint and very red point of light very near (at 0.8 arcsec angular distance) a brown-dwarf object, designated 2MASSWJ1207334-393254. Also known as "2M1207", this is a "failed star", i.e. a body too small for major nuclear fusion processes to have ignited in its interior and now producing energy by contraction. It is a member of the TW Hydrae stellar association located at a distance of about 230 light-years. The discovery was made with the adaptive-optics supported NACO facility [3] at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory (Chile).
The feeble object is more than 100 times fainter than 2M1207 and its near-infrared spectrum was obtained with great efforts in June 2004 by NACO, at the technical limit of the powerful facility. This spectrum shows the signatures of water molecules and confirms that the object must be comparatively small and light.
None of the available observations contradict that it may be an exoplanet in orbit around 2M1207. Taking into account the infrared colours and the spectral data, evolutionary model calculations point to a 5 jupiter-mass planet in orbit around 2M1207. Still, they do not yet allow a clear-cut decision about the real nature of this intriguing object. Thus, the astronomers refer to it as a "Giant Planet Candidate Companion (GPCC)" [4].
Observations will now be made to ascertain whether the motion in the sky of GPCC is compatible with that of a planet orbiting 2M1207. This should become evident within 1-2 years at the most.
PR Photo 26a/04: NACO image of the brown dwarf object 2M1207 and GPCC PR Photo 26b/04: Near-infrared spectrum of the brown dwarf object 2M1207 and GPCC PR Photo 26c/04: Comparison between the possible 2M1207 system and the solar system
Just a speck of light
ESO PR Photo 26a/04
ESO PR Photo 26a/04
The Brown Dwarf Object 2M1207 and GPCC
[Preview - JPEG: 400 x 471 pix - 65k] [Normal - JPEG: 800 x 942 pix - 158k]
Caption: ESO PR Photo 26a/04 is a composite image of the brown dwarf object 2M1207 (centre) and the fainter object seen near it, at an angular distance of 778 milliarcsec. Designated "Giant Planet Candidate Companion" by the discoverers, it may represent the first image of an exoplanet. Further observations, in particular of its motion in the sky relative to 2M1207 are needed to ascertain its true nature. The photo is based on three near-infrared exposures (in the H, K and L' wavebands) with the NACO adaptive-optics facility at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory.
Since 1998, a team of European and American astronomers [2] is studying the environment of young, nearby "stellar associations", i.e., large conglomerates of mostly young stars and the dust and gas clouds from which they were recently formed.
The stars in these associations are ideal targets for the direct imaging of sub-stellar companions (planets or brown dwarf objects). The leader of the team, ESO astronomer Gael Chauvin notes that "whatever their nature, sub-stellar objects are much hotter and brighter when young - tens of millions of years - and therefore can be more easily detected than older objects of similar mass".
The team especially focused on the study of the TW Hydrae Association. It is located in the direction of the constellation Hydra (The Water-Snake) deep down in the southern sky, at a distance of about 230 light-years. For this, they used the NACO facility [3] at the 8.2-m VLT Yepun telescope, one of the four giant telescopes at the ESO Paranal Observatory in northern Chile. The instrument's adaptive optics (AO) overcome the distortion induced by atmospheric turbulence, producing extremely sharp near-infrared images. The infrared wavefront sensor was an essential component of the AO system for the success of these observations. This unique instrument senses the deformation of the near-infrared image, i.e. in a wavelength region where objects like 2M1207 (see below) are much brighter than in the visible range.
The TW Hydrae Association contains a star with an orbiting brown dwarf companion, approximately 20 times the mass of Jupiter, and four stars surrounded by dusty proto-planetary disks. Brown dwarf objects are "failed stars", i.e. bodies too small for nuclear processes to have ignited in their interior and now producing energy by contraction. They emit almost no visible light. Like the Sun and the giant planets in the solar system, they are composed mainly of hydrogen gas, perhaps with swirling cloud belts.
On a series of exposures made through different optical filters, the astronomers discovered a tiny red speck of light, only 0.8 arcsec from the TW Hydrae Association brown-dwarf object 2MASSWJ1207334-393254, or just "2M1207", cf. PR Photo 26a/04. The feeble image is more than 100 times fainter than that of 2M1207. "If these images had been obtained without adaptive optics, that object would not have been seen," says Gael Chauvin.
Christophe Dumas, another member of the team, is enthusiastic: "The thrill of seeing this faint source of light in real-time on the instrument display was unbelievable. Although it is surely much bigger than a terrestrial-size object, it is a strange feeling that it may indeed be the first planetary system beyond our own ever imaged."
Exoplanet or Brown Dwarf?
ESO PR Photo 26b/04
ESO PR Photo 26b/04
The Brown Dwarf Object 2M1207 and GPCC
[Preview - JPEG: 400 x 486 pix - 102k] [Normal - JPEG: 800 x 912 pix - 234k]
Caption: ESO PR Photo 26b/04 shows near-infrared H-band spectra of the brown dwarf object 2M1207 and the fainter "GPCC" object seen near it, obtained with the NACO facility at the 8.2-m VLT Yepun telescope. In the upper part, the spectrum of 2M1207 (fully drawn blue curve) is compared with that of another substellar object (T513; dashed line); in the lower, the (somewhat noisy) spectrum of GPCC (fully drawn red curve) is compared with two substellar objects of different types (2M0301 and SDSS0539). The spectrum of GPCC is clearly very similar to these, confirming the substellar nature of this body. The broad dips at the left and the right are clear signatures of water in the (atmospheres of the) objects.
What is the nature of this faint object [4]? Could it be an exoplanet in orbit around that young brown dwarf object at a projected distance of about 8,250 million km (about twice the distance between the Sun and Neptune)?
"If the candidate companion of 2M1207 is really a planet, this would be the first time that a gravitationally bound exoplanet has been imaged around a star or a brown dwarf" says Benjamin Zuckerman of UCLA, a member of the team and also of NASA's Astrobiology Institute.
Using high-angular-resolution spectroscopy with the NACO facility, the team has confirmed the substellar status of this object - now referred to as the "Giant Planet Candidate Companion (GPCC)" - by identifying broad water-band absorptions in its atmosphere, cf. PR Photo 26b/04.
The spectrum of a young and hot planet - as the GPCC may well be - will have strong similarities with an older and more massive object such as a brown dwarf. However, when it cools down after a few tens of millions of years, such an object will show the spectral signatures of a giant gaseous planet like those in our own solar system.
Although the spectrum of GPCC is quite "noisy" because
No affiliations
No associations
LandOfFree
Is This Speck of Light an Exoplanet? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Is This Speck of Light an Exoplanet?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Is This Speck of Light an Exoplanet? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1064502