Mathematics – Quantum Algebra
Scientific paper
2010-03-31
Mathematics
Quantum Algebra
47 pages
Scientific paper
One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[\partial] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work. The present paper is the second in our series on representation theory of simple Lie pseudoalgebras. In the first paper we showed that any finite irreducible module over a simple Lie pseudoalgebra of type W or S is either an irreducible tensor module or the kernel of the differential in a member of the pseudo de Rham complex. In the present paper we establish a similar result for Lie pseudoalgebras of type K, with the pseudo de Rham complex replaced by a certain reduction called the contact pseudo de Rham complex. This reduction in the context of contact geometry was discovered by Rumin.
Bakalov Bojko
D'Andrea Alessandro
Kac Victor G.
No associations
LandOfFree
Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-580133