Ion probe measurements of carbon and nitrogen in iron meteorites

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11

Scientific paper

Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of carbon except for IAB irons where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of nitrogen in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe,Ni)4N) are present. Carbon and nitrogen distributions in taenite are well correlated, unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. 1) These elements are enriched at the center of taenite (convex type). 2) They are enriched at the edge of taenite (concave type). 3) They are enriched near but some distance away from the edge of taenite (complex type). The case 1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M- shape nickel concentration profile. The case 2) seems to be best explained as diffusion controlled C and N distributions. In the case 3), the interior of taenite has been transformed to the a phase (kamacite or martensite). C and N were expelled from the a phase and enriched near the inner border of the remaining g phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt.% in some irons. Nitride (carlsbergite and roaldite) is present in meteorites with high nitrogen concentrations in taenite, suggesting that the nitride was formed due to supersaturation of the metallic phases with nitrogen. The same tendency is generally observed for carbon, i.e. high C concentrations in taenite correlate with the presence of carbide and/or graphite. Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible, because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of carbon transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass-spectrometry.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ion probe measurements of carbon and nitrogen in iron meteorites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ion probe measurements of carbon and nitrogen in iron meteorites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ion probe measurements of carbon and nitrogen in iron meteorites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1864426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.