Computer Science
Scientific paper
Jan 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002iaf..confe.807a&link_type=abstract
IAF abstracts, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, 2002 in Houston, TX, USA.,
Computer Science
Scientific paper
Investigation of the discharge characteristics of the T6 hollow cathode operating on several inert Xenon is currently the propellant of choice for gridded ion thrusters. But in order to make deep space missions feasible, an increase in the Specific Impulse (SI) that these thrusters can achieve is necessary. One method of achieving this is to use a propellant with a lower atomic mass (e.g. argon), as the propellant exhaust velocity is inversely proportional to the square root of the propellant mass. However, the feasibility of operating the hollow cathode using these alternative propellants has to be demonstrated. Moreover, interest in decreasing the propellant cost in missions and ground testing (especially life tests) have led to the comprehensive discharge characterisation of several gases that will be presented in this paper. A Kr/Xe mixture in the naturally occurring ratio, for example, could offer a 15 times cost saving when compared to pure xenon and 2-3 times cost saving when compared to pure krypton. The T6 hollow cathode discharge behaviour as well as its initiation characteristics have been studied. The tests were carried out in diode configuration using a T6 hollow cathode with an enclosed keeper design employing xenon, krypton, argon and a Kr/Xe mix. The discharge initiation tests were undertaken with a view to investigate some of the factors thought to influence the starting potential such as mass flow rate and tip temperature. It was found that, for mass flow rates ranging from 0.2-1.1 mg/s and cathode tip temperatures ranging from 900-1300oC, the breakdown potential was less than 50V for argon, less than 25V for krypton, less than 21V for xenon and less than 35V for the Kr/Xe mix. The discharge initiation results were then compared to those obtained by Fearn et al. with a T5 cathode operating on mercury and with a T6 cathode utilising an open keeper design using xenon propellant. The xenon breakdown potentials were found to be lower than those obtained with an open keeper design by as much as 4V. Steady state discharge behaviour was also investigated in a range of operating conditions. Spot to plume mode transitions were observed in argon, krypton and Kr/Xe discharges for the first time.
Ahmed Rudwan M.
Gabriel Stephen B.
No associations
LandOfFree
Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1332905