Mathematics – Commutative Algebra
Scientific paper
2010-08-13
Mathematics
Commutative Algebra
to appear in J. London Math. Soc
Scientific paper
Migliore-Mir\'o-Roig-Nagel [Trans. A.M.S. 2011, arXiv: 0811.1023] show that the weak Lefschetz property (WLP) can fail for an ideal I in K[x_1,x_2,x_3,x_4] generated by powers of linear forms. This is in contrast to the analogous situation in K[x_1,x_2,x_3], where WLP always holds [H.Schenck, A.Seceleanu, Proc. A.M.S. 2010, arXiv:0911.0876]. We use the inverse system dictionary to connect I to an ideal of fat points and show that failure of WLP for powers of linear forms is connected to the geometry of the associated fat point scheme. Recent results of Sturmfels-Xu in [J. Eur. Math. Soc. 2010, arXiv:0803.0892] allow us to relate WLP to Gelfand-Tsetlin patterns. See the paper "On the weak Lefschetz property for powers of linear forms" by Migliore-Mir\'o-Roig-Nagel [arXiv:1008.2149] for related results.
Harbourne Brian
Schenck Hal
Seceleanu Alexandra
No associations
LandOfFree
Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-503556