Mathematics – Statistics Theory
Scientific paper
2009-07-20
Mathematics
Statistics Theory
Scientific paper
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are non-separable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median-bias-corrected estimator of such bounds as a natural by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.
Chernozhukov Victor
Lee Sokbae
Rosen Adam M.
No associations
LandOfFree
Intersection Bounds: Estimation and Inference does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Intersection Bounds: Estimation and Inference, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intersection Bounds: Estimation and Inference will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-174584