Interpretation of the microwave non-thermal radiation of the Moon during impact events

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

The results of recent observations of the non-thermal electromagnetic (EM) emission at wavelengths of 2.5cm, 13cm, and 21cm are summarized. After strong impacts of meteorites or spacecrafts (Lunar Prospector) with the Moon's surface, the radio emissions in various frequency ranges were recorded. The most distinctive phenomenon is the appearance of quasi-periodic oscillations with amplitudes of 3-10K during several hours. The mechanism concerning the EM emission from a propagating crack within a piezoactive dielectric medium is considered. The impact may cause the global acoustic oscillations of the Moon. These oscillations lead to the crackening of the Moon's surface. The propagation of a crack within a piezoactive medium is accompanied by the excitation of an alternative current source. It is revealed that the source of the EM emission is the effective transient magnetization that appears in the case of a moving crack in piezoelectrics. The moving crack creates additional non-stationary local mechanical stresses around the apex of the crack, which generate the non-stationary electromagnetic field. For the cracks with a length of 0.1-1µm, the maximum of the EM emission may be in the 1-10GHz range.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Interpretation of the microwave non-thermal radiation of the Moon during impact events does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Interpretation of the microwave non-thermal radiation of the Moon during impact events, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interpretation of the microwave non-thermal radiation of the Moon during impact events will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1055500

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.