Computer Science
Scientific paper
Nov 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004nhess...4..793g&link_type=abstract
Natural Hazards and Earth System Science, Volume 4, Issue 5/6, 2004, pp.793-798
Computer Science
2
Scientific paper
The results of recent observations of the non-thermal electromagnetic (EM) emission at wavelengths of 2.5cm, 13cm, and 21cm are summarized. After strong impacts of meteorites or spacecrafts (Lunar Prospector) with the Moon's surface, the radio emissions in various frequency ranges were recorded. The most distinctive phenomenon is the appearance of quasi-periodic oscillations with amplitudes of 3-10K during several hours. The mechanism concerning the EM emission from a propagating crack within a piezoactive dielectric medium is considered. The impact may cause the global acoustic oscillations of the Moon. These oscillations lead to the crackening of the Moon's surface. The propagation of a crack within a piezoactive medium is accompanied by the excitation of an alternative current source. It is revealed that the source of the EM emission is the effective transient magnetization that appears in the case of a moving crack in piezoelectrics. The moving crack creates additional non-stationary local mechanical stresses around the apex of the crack, which generate the non-stationary electromagnetic field. For the cracks with a length of 0.1-1µm, the maximum of the EM emission may be in the 1-10GHz range.
Berezhnoy Alexander
Grimalsky Volodymyr
Koshevaya S.
Kotsarenko A.
Makarets N.
No associations
LandOfFree
Interpretation of the microwave non-thermal radiation of the Moon during impact events does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Interpretation of the microwave non-thermal radiation of the Moon during impact events, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interpretation of the microwave non-thermal radiation of the Moon during impact events will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1055500