Interaction of two black holes in the slow-motion limit

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

66

Black Holes (Astronomy), Equations Of Motion, Gravitational Effects, Perturbation Theory, Rotating Bodies, Asymptotic Series, Celestial Mechanics, Einstein Equations, Newton Theory, Relativity

Scientific paper

The interaction of two black holes is considered under the assumptions that each black hole moves in the far field of the other and that the relative velocity is small compared to the speed of light. The black holes may rotate and possess comparable masses. A previously developed method of matched asymptotic expansions is used to relate the gravitational field far from the black holes (described by a slow-motion perturbation of flat space) to the gravitational field near the holes (described by perturbations of the Kerr geometry). This leads to equations of motion and spin propagation giving the main deviations from Newtonian behavior. The derivation employs only the Einstein vacuum equations, and the resulting equations are generalizations of well-known expressions for the interaction of massive or rotating bodies in general relativity.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Interaction of two black holes in the slow-motion limit does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Interaction of two black holes in the slow-motion limit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interaction of two black holes in the slow-motion limit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1747491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.