Mathematics – Statistics Theory
Scientific paper
2011-02-09
Bernoulli 2011, Vol. 17, No. 1, 1-33
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.3150/10-BEJ259 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statisti
Scientific paper
10.3150/10-BEJ259
Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar and (iii) stationary increment processes. They are the natural multivariate generalizations of the well-studied fractional Brownian motions. Because of the possible lack of time-reversibility, the defining properties (i)--(iii) do not, in general, characterize the covariance structure of OFBMs. To circumvent this problem, the class of OFBMs is characterized here by means of their integral representations in the spectral and time domains. For the spectral domain representations, this involves showing how the operator self-similarity shapes the spectral density in the general representation of stationary increment processes. The time domain representations are derived by using primary matrix functions and taking the Fourier transforms of the deterministic spectral domain kernels. Necessary and sufficient conditions for OFBMs to be time-reversible are established in terms of their spectral and time domain representations. It is also shown that the spectral density of the stationary increments of an OFBM has a rigid structure, here called the dichotomy principle. The notion of operator Brownian motions is also explored.
Didier Gustavo
Pipiras Vladas
No associations
LandOfFree
Integral representations and properties of operator fractional Brownian motions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Integral representations and properties of operator fractional Brownian motions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integral representations and properties of operator fractional Brownian motions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-650061