Integral Excision for K-Theory

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21 pages

Scientific paper

If A is a homotopy cartesian square of ring spectra satisfying connectivity hypotheses, then the cube induced by Goodwillie's integral cyclotomic trace from K(A) to TC(A) is homotopy cartesian. In other words, the homotopy fiber of the cyclotomic trace satisfies excision. The method of proof gives as a spin-off new proofs of some old results, as well as some new results, about periodic cyclic homology, and - more relevantly for our current application - the T-Tate spectrum of topological Hochschild homology, where T is the circle group

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Integral Excision for K-Theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Integral Excision for K-Theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integral Excision for K-Theory will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-26889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.