Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2009-03-20
Nonlinear Sciences
Exactly Solvable and Integrable Systems
22 pages
Scientific paper
We classify integrable third order equations in 2+1 dimensions which generalize the examples of Kadomtsev-Petviashvili, Veselov-Novikov and Harry Dym equations. Our approach is based on the observation that dispersionless limits of integrable systems in 2+1 dimensions possess infinitely many multi-phase solutions coming from the so-called hydrodynamic reductions. %Conversely, the requirement of the existence of hydrodynamic reductions proves to be an efficient classification criterion. In this paper we adopt a novel perturbative approach to the classification problem. Based on the method of hydrodynamic reductions, we first classify integrable quasilinear systems which may (potentially) occur as dispersionless limits of soliton equations in 2+1 dimensions. To reconstruct dispersive deformations, we require that all hydrodynamic reductions of the dispersionless limit are inherited by the corresponding dispersive counterpart. This procedure leads to a complete list of integrable third order equations, some of which are apparently new.
Ferapontov E. V.
Moro Antonio
Novikov Sergey V.
No associations
LandOfFree
Integrable equations in 2+1-dimensions: deformations of dispersionless limits does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Integrable equations in 2+1-dimensions: deformations of dispersionless limits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrable equations in 2+1-dimensions: deformations of dispersionless limits will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-642535