Instabilities and bifurcations of the families of collision periodic orbits in the restricted three-body problem

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

By using Birkhoff's regularizing transformation, we study the evolution of some of the infinite j-k type families of collision periodic orbits with respect to the mass ratio μ as well as their stability and dynamical structure, in the planar restricted three-body problem. The μ-C characteristic curves of these families extend to the left of the μ-C diagram, to smaller values of μ and most of them go downwards, although some of them end by spiralling around the constant point S* (μ=0.47549, C=3) of the Bozis diagram (1970). Thus we know now the continuation of the families which go through collision periodic orbits of the Sun-Jupiter and Earth-Moon systems. We found new μ-C and x-C characteristic curves. Along each μ-C characteristic curve changes of stability to instability and vice versa and successive very small stable and very large unstable segments appear. Thus we found different types of bifurcations of families of collision periodic orbits. We found cases of infinite period doubling Feigenbaum bifurcations as well as bifurcations of new families of symmetric and non-symmetric collision periodic orbits of the same period. In general, all the families of collision periodic orbits are strongly unstable. Also, we found new x-C characteristic curves of j-type classes of symmetric periodic orbits generated from collision periodic orbits, for some given values of μ. As C varies along the μ-C or the x-C spiral characteristics, which approach their focal-terminating-point, infinite loops, one inside the other, surrounding the triangular points L4 and L5 are formed in their orbits. So, each terminating point corresponds to a collision asymptotic symmetric periodic orbit for the case of the μ-C curve or a non-collision asymptotic symmetric periodic orbit for the case of the x-C curve, that spiral into the points L4 and L5, with infinite period. All these are changes in the topology of the phase space and so in the dynamical properties of the restricted three-body problem.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Instabilities and bifurcations of the families of collision periodic orbits in the restricted three-body problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Instabilities and bifurcations of the families of collision periodic orbits in the restricted three-body problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Instabilities and bifurcations of the families of collision periodic orbits in the restricted three-body problem will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1428017

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.