Computer Science – Information Theory
Scientific paper
2010-03-14
Computer Science
Information Theory
14 pages, 13 figures
Scientific paper
Signals comprised of a stream of short pulses appear in many applications including bio-imaging and radar. The recent finite rate of innovation framework, has paved the way to low rate sampling of such pulses by noticing that only a small number of parameters per unit time are needed to fully describe these signals. Unfortunately, for high rates of innovation, existing sampling schemes are numerically unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect reconstruction of periodic streams from the minimal number of samples. We then design a compactly supported class of filters, satisfying this condition. The periodic solution is extended to finite and infinite streams, and is shown to be numerically stable even for a large number of pulses. High noise robustness is also demonstrated when the delays are sufficiently separated. Finally, we process ultrasound imaging data using our techniques, and show that substantial rate reduction with respect to traditional ultrasound sampling schemes can be achieved.
Eldar Yonina C.
Friedman Zvi
Tur Ronen
No associations
LandOfFree
Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-213745