Computer Science – Logic in Computer Science
Scientific paper
2010-07-24
LMCS 6 (3:15) 2010
Computer Science
Logic in Computer Science
Scientific paper
10.2168/LMCS-6(3:15)2010
Terms are a concise representation of tree structures. Since they can be naturally defined by an inductive type, they offer data structures in functional programming and mechanised reasoning with useful principles such as structural induction and structural recursion. However, for graphs or "tree-like" structures - trees involving cycles and sharing - it remains unclear what kind of inductive structures exists and how we can faithfully assign a term representation of them. In this paper we propose a simple term syntax for cyclic sharing structures that admits structural induction and recursion principles. We show that the obtained syntax is directly usable in the functional language Haskell and the proof assistant Agda, as well as ordinary data structures such as lists and trees. To achieve this goal, we use a categorical approach to initial algebra semantics in a presheaf category. That approach follows the line of Fiore, Plotkin and Turi's models of abstract syntax with variable binding.
No associations
LandOfFree
Initial Algebra Semantics for Cyclic Sharing Tree Structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Initial Algebra Semantics for Cyclic Sharing Tree Structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Initial Algebra Semantics for Cyclic Sharing Tree Structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-369194