Computer Science – Sound
Scientific paper
Aug 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008ge%26ae..48..479p&link_type=abstract
Geomagnetism and Aeronomy, Volume 48, Issue 4, pp.479-490
Computer Science
Sound
2
94.20.Dj, 96.60.Qd, F Region, Sun Spots, Solar Cycles
Scientific paper
The three-dimensional nonstationary theoretical model of the concentrations and temperatures of electrons and ions in the ionospheric F region and plasmasphere at low and middle latitudes is used to study variations in the concentration NmF2 and height hmF2 of the ionospheric F2 layer under the action of the plasma zonal drift in the direction geomagnetic west-geomagnetic east perpendicularly to the electric E and geomagnetic B fields. The calculated and measured values of NmF2 and hmF2 for 16 ionospheric sounding stations during the quiet geomagnetic period on March 28-29, 1964 at low solar activity are compared. This comparison made it possible to correct the input parameters of the model: [O] from the NRLMSISE-00 model and the meridional component of the neutral wind velocity from the HWW90 model. It is shown that the nighttime NmF2 values decrease up to twice at low solar activity in the low-latitude ionosphere, and the hmF2 values change by up to 16 km, if the plasma zonal E× B drift is not taken into account. Under the daytime conditions, the influence of the plasma zonal E× B drift on NmF2 can be neglected.
Pavlov A. V.
Pavlova N. M.
Shevnin A. D.
No associations
LandOfFree
Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1694806