Infinity-harmonic maps and morphisms

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We propose a new notion called \emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $p\to \infty $. Infinity harmoncity appears in many familiar contexts. For example, metric projection onto the orbit of an isometric group action from a tubular neighborhood is infinity harmonic. Unfortunately, infinity-harmonicity is not preserved under composition. Those infinity harmonic maps that always preserve infinity harmonicity under pull back are called infinity harmonic morphisms. We show that infinity harmonic morphisms are precisely horizontally homothetic mas. Many example of infinity-harmonic maps are given, including some very important and well-known classes of maps between Riemannian manifolds.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Infinity-harmonic maps and morphisms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Infinity-harmonic maps and morphisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Infinity-harmonic maps and morphisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-205924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.