Mathematics – Statistics Theory
Scientific paper
2008-05-26
Mathematics
Statistics Theory
30 pages
Scientific paper
Multivariate normal mixtures provide a flexible model for high-dimensional data. They are widely used in statistical genetics, statistical finance, and other disciplines. Due to the unboundedness of the likelihood function, classical likelihood-based methods, which may have nice practical properties, are inconsistent. In this paper, we recommend a penalized likelihood method for estimating the mixing distribution. We show that the maximum penalized likelihood estimator is strongly consistent when the number of components has a known upper bound. We also explore a convenient EM-algorithm for computing the maximum penalized likelihood estimator. Extensive simulations are conducted to explore the effectiveness and the practical limitations of both the new method and the ratified maximum likelihood estimators. Guidelines are provided based on the simulation results.
Chen Jiahua
Tan Xianming
No associations
LandOfFree
Inference for Multivariate Normal Mixtures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Inference for Multivariate Normal Mixtures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inference for Multivariate Normal Mixtures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-321052