Inductive LS cocategory and localisation

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, no figures

Scientific paper

In this paper we prove that the inductive cocategory of a nilpotent $CW$-complex of finite type $X$, $\indcocat X$, is bounded above by an expression involving the inductive cocategory of the $p$-localisations of $X$. Our arguments can be dualised to LS category improving previous results by Cornea and Stanley. Finally, we show that the inductive cocategory is generic for 1-connected $H_0$-spaces of finite type.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Inductive LS cocategory and localisation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Inductive LS cocategory and localisation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inductive LS cocategory and localisation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-550365

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.