Mathematics – Dynamical Systems
Scientific paper
2011-12-05
Mathematics
Dynamical Systems
27 pages, 9 figures
Scientific paper
We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighbourhood. In the first-order model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description.
Burger Martin
Haskovec Jan
Wolfram Marie-Therese
No associations
LandOfFree
Individual based and mean-field modelling of direct aggregation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Individual based and mean-field modelling of direct aggregation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Individual based and mean-field modelling of direct aggregation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-379427