Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2010-05-22
Computer Science
Computer Vision and Pattern Recognition
14 pages
Scientific paper
10.1109/TIP.2010.2053548
The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand. In addition, once learned, an offline detector can not make use of newly arriving data. To alleviate these drawbacks, online learning has been adopted with the following objectives: (1) the technique should be computationally and storage efficient; (2) the updated classifier must maintain its high classification accuracy. In this paper, we propose an effective and efficient framework for learning an adaptive online greedy sparse linear discriminant analysis (GSLDA) model. Unlike many existing online boosting detectors, which usually apply exponential or logistic loss, our online algorithm makes use of LDA's learning criterion that not only aims to maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions. We provide a better alternative for online boosting algorithms in the context of training a visual object detector. We demonstrate the robustness and efficiency of our methods on handwriting digit and face data sets. Our results confirm that object detection tasks benefit significantly when trained in an online manner.
Paisitkriangkrai Sakrapee
Shen Chunhua
Zhang Jian
No associations
LandOfFree
Incremental Training of a Detector Using Online Sparse Eigen-decomposition does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Incremental Training of a Detector Using Online Sparse Eigen-decomposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Incremental Training of a Detector Using Online Sparse Eigen-decomposition will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-412785