In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

Space weathering is now generally accepted to modify the optical and magnetic properties of airless planetary regoliths such as those on the Moon and Mercury. Under micrometeorite and ion bombardment, ferrous iron in such surfaces is reduced to metallic iron spheres, found in amorphous coatings on almost all exposed regolith grains. The size and number distribution of these particles and their location in the regolith all determine the nature and extent of the optical and magnetic changes. These parameters in turn reflect the formation mechanisms, temperatures, and durations involved in the evolution of the regolith. Studying them in situ is of intrinsic value to understanding the weathering process, and useful for determining the maturity of the regolith and providing supporting data for interpreting remotely sensed mineralogy. Fine-grained metallic iron has a number of properties that make it amenable to magnetic techniques, of which magnetic susceptibility is the simplest and most robust. The magnetic properties of the lunar regolith and laboratory regolith analogues are therefore reviewed and the theoretical basis for the frequency dependence of magnetic susceptibility presented. Proposed here is then an instrument concept using multi-frequency measurements of magnetic susceptibility to confirm the presence of fine-grained magnetic material and attempt to infer its quantity and size distribution. Such an instrument would be invaluable on a future mission to an asteroid, the Moon, Mercury or other airless rocky Solar System body.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1428047

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.