Computer Science – Artificial Intelligence
Scientific paper
2012-02-14
Computer Science
Artificial Intelligence
Scientific paper
Previous work has shown that the problem of learning the optimal structure of a Bayesian network can be formulated as a shortest path finding problem in a graph and solved using A* search. In this paper, we improve the scalability of this approach by developing a memory-efficient heuristic search algorithm for learning the structure of a Bayesian network. Instead of using A*, we propose a frontier breadth-first branch and bound search that leverages the layered structure of the search graph of this problem so that no more than two layers of the graph, plus solution reconstruction information, need to be stored in memory at a time. To further improve scalability, the algorithm stores most of the graph in external memory, such as hard disk, when it does not fit in RAM. Experimental results show that the resulting algorithm solves significantly larger problems than the current state of the art.
Bridges Susan
Hansen Eric A.
Malone Brandon
Yuan Changhe
No associations
LandOfFree
Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-90584