Improved Digitization of Lunar Mare Ridges with LROC Derived Products

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5494] Planetary Sciences: Solid Surface Planets / Instruments And Techniques, [6250] Planetary Sciences: Solar System Objects / Moon

Scientific paper

Lunar wrinkle ridges (mare ridges) are positive-relief structures formed from compressional stress in basin-filling flood basalt deposits [1]. Previous workers have measured wrinkle ridge orientations and lengths to investigate their spatial distribution and infer basin-localized stress fields [2,3]. Although these plots include the most prominent mare ridges and their general trends, they may not have fully captured all of the ridges, particularly the smaller-scale ridges. Using Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) global mosaics and derived topography (100m pixel scale) [4], we systematically remapped wrinkle ridges in Mare Serenitatis. By comparing two WAC mosaics with different lighting geometry, and shaded relief maps made from a WAC digital elevation model (DEM) [5], we observed that some ridge segments and some smaller ridges are not visible in previous structure maps [2,3]. In the past, mapping efforts were limited by a fixed Sun direction [6,7]. For systematic mapping we created three shaded relief maps from the WAC DEM with solar azimuth angles of 0°, 45°, and 90°, and a fourth map was created by combining the three shaded reliefs into one, using a simple averaging scheme. Along with the original WAC mosaic and the WAC DEM, these four datasets were imported into ArcGIS, and the mare ridges of Imbrium, Serenitatis, and Tranquillitatis were digitized from each of the six maps. Since the mare ridges are often divided into many ridge segments [8], each major component was digitized separately, as opposed to the ridge as a whole. This strategy enhanced our ability to analyze the lengths, orientations, and abundances of these ridges. After the initial mapping was completed, the six products were viewed together to identify and resolve discrepancies in order to produce a final wrinkle ridge map. Comparing this new mare ridge map with past lunar tectonic maps, we found that many mare ridges were not recorded in the previous works. It was noted in some cases, the lengths and orientations of previously digitized ridges were different than those of the ridges digitized in this study. This method of multi-map digitizing allows for a greater accuracy in spatial characterization of mare ridges than previous methods. We intend to map mare ridges on a global scale, creating a more comprehensive ridge map due to higher resolution. References Cited: [1] Schultz P.H. (1976) Moon Morphology, 308. [2] Wilhelms D.E. (1987) USGS Prof. Paper 1348, 5A-B. [3] Carr, M.H. (1966) USGS Geologic Atlas of the Moon, I-498. [4] Robinson M.S. (2010) Space Sci. Rev., 150:82. [5] Scholten F. et al. (2011) LPSC XLII, 2046. [6] Fielder G. and Kiang T. (1962) The Observatory: No. 926, 8. [7] Watters T.R. and Konopliv A.S. (2001) Planetary and Space Sci. 49. 743-748. [8] Aubele J.C. (1988) LPSC XIX, 19.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Improved Digitization of Lunar Mare Ridges with LROC Derived Products does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Improved Digitization of Lunar Mare Ridges with LROC Derived Products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Improved Digitization of Lunar Mare Ridges with LROC Derived Products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-872362

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.