Computer Science – Data Structures and Algorithms
Scientific paper
2010-10-14
Computer Science
Data Structures and Algorithms
17 pages
Scientific paper
In this paper, we use a new method to decrease the parameterized complexity bound for finding the minimum vertex cover of connected max-degree-3 undirected graphs. The key operation of this method is reduction of the size of a particular subset of edges which we introduce in this paper and is called as "real-cycle" subset. Using "real-cycle" reductions alone we compute a complexity bound $O(1.15855^k)$ where $k$ is size of the optimal vertex cover. Combined with other techniques, the complexity bound can be further improved to be $O(1.1504^k)$. This is currently the best complexity bound.
Cao Weiwei
Franco John
Yue Weiya
No associations
LandOfFree
Improved Complexity Bound of Vertex Cover for Low degree Graph does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Improved Complexity Bound of Vertex Cover for Low degree Graph, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Improved Complexity Bound of Vertex Cover for Low degree Graph will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-285120