Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2010-05-27
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
5 pages, 4 figures, accepted for publication in ApJ Letters. Minor change to Figure 4
Scientific paper
We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 Jupiter masses on companions at separations outside of 0.1" and of 13 Jupiter masses outside of 0.2". Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.
Abe Lyu
Brandner Wolfgang
Carson Jennifer
Egner Sebastian
Feldt Markus
No associations
LandOfFree
Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-15095