Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2010-05-26
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
12 pages, 5 figures, accepted for publication in ApJ
Scientific paper
We analysed thermonuclear (type-I) X-ray bursts observed from the low-mass X-ray binary 4U1728-34 by RXTE, Chandra and INTEGRAL. We compared the variation in burst energy and recurrence times as a function of accretion rate with the predictions of a numerical ignition model including a treatment of the heating and cooling in the crust. We found that the measured burst ignition column depths are significantly below the theoretically predicted values, regardless of the assumed thermal structure of the neutron star interior. While it is possible that the accretion rate measured by Chandra is underestimated, due to additional persistent spectral components outside the sensitivity band, the required correction factor is typically 3.6 and as high as 6, which is implausible. Furthermore, such underestimation is even more unlikely for RXTE and INTEGRAL, which have much broader bandpasses. Possible explanations for the observed discrepancy include shear-triggered mixing of the accreted helium to larger column depths, resulting in earlier ignition, or the fractional covering of the accreted fuel on the neutron star surface.
Cooper Randall L.
Galloway Duncan K.
Misanovic Zdenka
No associations
LandOfFree
Ignition column depths of helium-rich thermonuclear bursts from 4U 1728-34 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ignition column depths of helium-rich thermonuclear bursts from 4U 1728-34, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ignition column depths of helium-rich thermonuclear bursts from 4U 1728-34 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-605089