Astronomy and Astrophysics – Astrophysics – Instrumentation and Methods for Astrophysics
Scientific paper
2011-01-10
Astronomy and Astrophysics
Astrophysics
Instrumentation and Methods for Astrophysics
17 pages, 16 figures, accepted by Astronomy and Astrophysics 21st December 2010
Scientific paper
We wished to analyse a sample of observations from the XMM-Newton Science Archive to search for evidence of exospheric solar wind charge exchange (SWCX) emission. We analysed 3012 observations up to and including revolution 1773. The method employed extends from that of the previously published paper by these authors on this topic. We detect temporal variability in the diffuse X-ray background within a narrow low-energy band and contrast this to a continuum. The low-energy band was chosen to represent the key indicators of charge exchange emission and the continuum was expected to be free of SWCX. Approximately 3.4 % of observations studied are affected. We discuss our results with reference to the XMM-Newton mission. We further investigate remarkable cases by considering the state of the solar wind and the orientation of XMM-Newton at the time of these observations. We present a method to approximate the expected emission from observations, based on given solar wind parameters taken from an upstream solar wind monitor. We also compare the incidence of SWCX cases with solar activity. We present a comprehensive study of the majority of the suitable and publically available XMM-Newton Science Archive to date, with respect to the occurrence of SWCX enhancements. We present our SWCX-affected subset of this dataset. The mean exospheric-SWCX flux observed within this SWCX-affected subset was 15.4 keV cm-2 s-1 sr-1 in the energy band 0.25 to 2.5 keV. Exospheric SWCX is preferentially detected when XMM-Newton observes through the subsolar region of the Earth's magnetosheath. The model developed to estimate the expected emission returns fluxes within a factor of a few of the observed values in the majority of cases, with a mean value at 83 %.
Carter James A.
Read Andrew M.
Sembay Steve
No associations
LandOfFree
Identifying XMM-Newton observations affected by solar wind charge exchange - Part II does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Identifying XMM-Newton observations affected by solar wind charge exchange - Part II, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Identifying XMM-Newton observations affected by solar wind charge exchange - Part II will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-456678